Improving Elevator Performance Using Reinforcement Learning

نویسندگان

  • Robert H. Crites
  • Andrew G. Barto
چکیده

This paper describes the application of reinforcement learning (RL) to the di cult real world problem of elevator dispatching. The elevator domain poses a combination of challenges not seen in most RL research to date. Elevator systems operate in continuous state spaces and in continuous time as discrete event dynamic systems. Their states are not fully observable and they are nonstationary due to changing passenger arrival rates. In addition, we use a team of RL agents, each of which is responsible for controlling one elevator car. The team receives a global reinforcement signal which appears noisy to each agent due to the e ects of the actions of the other agents, the random nature of the arrivals and the incomplete observation of the state. In spite of these complications, we show results that in simulation surpass the best of the heuristic elevator control algorithms of which we are aware. These results demonstrate the power of RL on a very large scale stochastic dynamic optimization problem of practical utility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning for Elevator Control ?

Reinforcement learning (RL) comprises an array of techniques that learn a control policy so as to maximize a reward signal. When applied to the control of elevator systems, RL has the potential of finding better control policies than classical heuristic, suboptimal policies. On the other hand, elevator systems offer an interesting benchmark application for the study of RL. In this paper, RL is ...

متن کامل

A Greedy Divide-and-Conquer Approach to Optimizing Large Manufacturing Systems using Reinforcement Learning

Manufacturing is a challenging real-world domain for studying hierarchical MDP-based optimization algorithms. We have recently obtained very promising results using a hierarchical reinforcement learning based optimization algorithm for a 12-machine transfer line. Transfer lines model factory processes in automobile and many other product assembly plants. Unlike domains such as elevator scheduli...

متن کامل

Low-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach

This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...

متن کامل

iCORE Research Grant Renewal Proposal Reinforcement Learning and Artificial Intelligence

The RLAI research program pursues an approach to artificial intelligence and engineering problems in which they are formulated as large optimal control problems and approximately solved using reinforcement learning methods. Reinforcement learning is a new body of theory and techniques for optimal control that has been developed in the last twenty years primarily within the machine learning and ...

متن کامل

Lower PAC bound on Upper Confidence Bound-based Q-learning with examples

Abstract Recently, there has been significant progress in understanding reinforcement learning in Markov decision processes (MDP). We focus on improving Q-learning and analyze its sample complexity. We investigate the performance of tabular Q-learning, Approximate Q-learning and UCB-based Q-learning. We also derive a lower PAC bound Ω( |S| |A| 2 ln |A| δ ) of UCB-based Q-learning. Two tasks, Ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995